TROPOSPHERIC AEROSOLS:

THE WILD CARD IN RADIATIVE FORCING OF CLIMATE CHANGE
Stephen E. Schwartz

Environmental Sciences Department

NATIONAL LABORATORY

Symposium on the
Chemistry of Global Climate Change

American Chemical Society

SR
A,
e e

v

226th National Meeting
September 7 — 11, 2003
New York City

http://www.ecd.bnl.gov/steve/schwartz.html



AEROSOL.: A suspension of particles in air
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Atmospheric aerosols may result from primary emissions (dust, smoke)
or from gas to particle conversion in the atmosphere (haze, smog).



KEY POINTS OF THIS PRESENTATION

® Radiative forcing of climate change by anthropogenic aerosols is

substantial in the context of other forcings of climate change over the
industrial period.

Cooling forcings of tens of watts per square meter have been
demonstrated locally and instantaneously.

Global annual mean forcings of -1 to -3 W m~? are plausible given
present understanding.

e Uncertainty in radiative forcing of climate change by anthropogenic

aerosols is the greatest source of uncertainty in forcing of climate
change.

This uncertainty precludes:
- Evaluation of models of climate change

- Inference of climate sensitivity from temperature changes over the
industrial period.

- Informed policy making on greenhouse gases.

cont'd. ..



KEY POINTS OF THIS PRESENTATION (cont’d)

* Confidence in present estimates of global sensitivity to climate change
may be greatly overstated.

® Radiative forcing by aerosols cannot be an effective means of
counteracting forcing by greenhouse gases.

Aerosols are short lived in the atmosphere (days).
Greenhouse gases are long-lived (decades)
In the long run GHGs will win.



OUTLINE OF THIS PRESENTATION

e Forcing and climate sensitivity

® Mechanisms of radiative forcing by aerosols
Direct
Indirect (via clouds)

® Magnitudes of radiative forcing by aerosols
Local and instantaneous
Global

e Uncertainties in radiative forcing by aerosols
Causes
Magnitudes

o Implications of these uncertainties

o What must be done to reduce these uncertainties?



TOP-LEVEL QUESTION IN
CLIMATE CHANGE SCIENCE

® How much will the global mean temperature change?
AT =AF
where F is the forcing and A is the climate sensitivity.

- A forcing is a change in a radiative flux component, W m™.

- Forcings are thought to be additive and fungible.

e What is Earth’s climate sensitivity?
- National Academy Report (Charney, 1979):

¢ ¢ We estimate the most probable global warming for a doubling of CO, to
be near 3 degrees C, with a probable error of plus or minus 1.5 degrees.

- Intergovernmental Panel on Climate Change (IPCC, 2001 ):

¢ ¢ Climate sensitivity [to CO, doubling] is likely to be in the range
1.5t0 4.5°C.



HOW CAN CLIMATE SENSITIVITY BE DETERMINED?
Climate sensitivity A = AT / F

e Climate models evaluated by performance on prior climate change
and/or

o Empirical determination from prior climate change

e Either way, AT and F must be determined with sufficiently small
uncertainty to yield an uncertainty in A that is useful for informed
decision making.

 Present generally accepted uncertainty in A (1.5 to 4.5°C) — a factor
of 3 — 1s not very useful for policy planning purposes.

e Uncertainty may be much greater!



RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD

IPCC (2001)
Greenhouse gases only

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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AEROSOL INFLUENCES ON
RADIATION BUDGET AND CLIMATE

Direct Effect (Cloud-free sky)
Light scattering -- Cooling influence
Light absorption -- Warming influence, depending on surface

Indirect Effects (Aerosols influence cloud properties)
More droplets -- Brighter clouds (Twomey)
More droplets -- Enhanced cloud lifetime (Albrecht)

Semi-Direct Effect
Absorbing aerosol heats air and evaporates clouds



CLIMATE FORCING BY SULFATE AEROSOL

Partial Heflecén of
Incoming Selar Radiation
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Forcing is the change in absorbed solar irradiance due to the presence of
the aerosol.



DIRECT EFFECT



DIRECT AEROSOL FORCING AT TOP OF ATMOSPHERE

Dependence on Aerosol Optical Thickness

Comparison of Linear Formula and Radiation Transfer Model

Particle radius » = 85 nm; surface reflectance R = 0.15; single scatter albedo wo = 1.
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Global-average AOT 0.1 corresponds to global-average forcing -3.2 W m-2.



AEROSOL OPTICAL DEPTH

Determined by Sunphotometry
North Central Oklahoma - Daily Average
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MONTHLY AVERAGE AEROSOL JUNE 1997

Polder radiometer on Adeos satellite
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INTERCOMPARISON OF BROADBAND SHORTWAVE
FORCING BY AMMONIUM SULFATE AEROSOL

Normalized global-average forcing: W m-2 / g(SO%{) m-2 or W /g(SO%{)
Aerosol optical depth 0.2; surface albedo 0.15
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Standard deviation ~8% for 15 models at radius ~ 200 nm.

Boucher, Schwartz and 28 co-authors, JGR, 1998



LIGHT SCATTERING EFFICIENCY OF (NH4)2S04
DEPENDENCE ON PARTICLE SIZE AND RH
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SULFATE MODEL INTERCOMPARISON

Annual average non-seasalt sulfate in 11 chemical transport
models and comparison with observations at nine stations
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RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD

IPCC (2001)
GHG’s and sulfate aerosol direct effects

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD

IPCC (2001)
GHG's and aerosol direct effects

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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INDIRECT EFFECT



DEPENDENCE OF CLOUD ALBEDO ON CLOUD DEPTH

Influence of Cloud Drop Radius and Concentration
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Twomey, Atmospheric Aerosols, 1977



A(Cloud-Top Albedo)
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SENSITIVITY OF ALBEDO AND FORCING
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MODELED SULFATE COLUMN BURDEN
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Schwartz, Harshvardhan &Benkovitz, PNAS, 2002



AVHRR IMAGES APRIL 2-8, 1987
Channel 1, Visible, 0.58-0.68 um

Channel 1 _ _ 1528 UTC 2 April 1987 Thanne 1 ___ W17 UTC § April ‘987 Thanne 1 ] ] 3 Channeg 1

(

Harshvardhan, Schwartz, Benkovitz and Guo, J Atmos Sci, 2002



Cloud Optical Depth T,

CLOUD OPTICAL DEPTH
Dependence on Liquid Water Path

25°-30°W, 50°-55°N  April 2-8, 1987
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CLOUD-TOP ALBEDO

Dependence on Liquid Water Path
25°-30°W, 50°-55'N  April 2, 5 and 7,1987
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SULFATE COLUMN BURDEN,
CLOUD PROPERTIES
AND INDIRECT FORCING

Mid North Atlantic (25-30°W, 50-55°N),
April 2-8, 1987

Sulfate from chemical transport model
(Benkovitz et al., JGR, 1997)

Cloud drop effective radius and cloud

optical depth from satellite retrievals
(Harshvardhan et al., JAS, 2002)

A spherical albedo is calculated relative

to median effective radius on April 2

(16.5 um) for retrieved LWP
(Schwartz et al., PNAS, 2002)

Forcing 1s calculated for median
effective radius relative to April 2;
solar zenith angle 60°; LWP 100 g m2
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CDNC (cm-3)

CLOUD DROPLET NUMBER CONCENTRATION

Dependence on Non-Seasalt Sulfate
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SHORTWAVE FORCING, ANNUAL AVERAGE

GHG's + O3 + Sulfate (Direct and Indirect)

Two Formulations of Cloud Droplet Concentration
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Kiehl et al., JGR, 2000
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RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD

IPCC (2001)
GHG's and aerosol direct and indirect effects

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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WHY SO LARGE UNCERTAINTY IN
AEROSOL FORCING?

o Uncertainties in knowledge of atmospheric composition

Mass loading and chemical and microphysical properties and cloud
nucleating properties of anthropogenic aerosols, and geographical
distribution.

At present and as a function of secular time.

o Uncertainties in knowledge of atmospheric physics of aerosols

Relating direct radiative forcing and cloud modification by aerosols to
their loading and their chemical and microphysical properties.



RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD

IPCC (2001)

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750
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RADIATIVE FORCING OVER THE INDUSTRIAL PERIOD

IPCC (2001) TOTAL
With totals and overall uncertainties by 3 approaches  ageraic sum
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REPRESENTING AEROSOL
INFLUENCES
IN CLIMATE MODELS



FORCING AND RESPONSE IN THE UK MET OFFICE MODEL (1995)
Model sensitivity = 2.5 K per CO2 doubling;
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“Inclusion of sulphate aerosol forcing improves the simulation of global mean
temperature over the last few decades.” -- Mitchell, Tett, et al., Nature, 1995



CLIMATE RESPONSE IN THE GFDL MODEL (1997)
Model sensitivity = 3.7 K per CO2 doubling; sulfate direct forcing only, -0.6 W m=2 (1990)
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“The global average SAT trend from the model [is] in reasonable agreement with
the observations.” -- Haywood, Ramaswamy et al., Geophys. Res. Lett, 1997



FORCING AND RESPONSE IN THE CANADIAN CLIMATE MODEL (2000)
Model sensitivity = 3.5 K per CO2 doubling;
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“Observed global mean temperature changes and those simulated for GHG + aerosol
forcing show reasonable agreement.” -- Boer, et al., Climate Dynamics, 2000



CLIMATE RESPONSE IN THE GFDL MODEL (2000)
Model sensitivity = 3.4 K per CO2 doubling;
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“The surface temperature time series from the five GHG-plus-sulfate integrations
show an increase over the last century, which is broadly consistent with the
observations.” -- Delworth & Knutson, Science, 2000



FORCING AND RESPONSE IN THE NCAR MODEL (2003)
Model sensitivity = 2.18 K per CO2 doubling;
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“The time series from GHG + sulfates + solar shows reasonable agreement with the
observations.” -- Meehl, Washington, Wigley et al., J. Climate, 2003.



FORCING AND RESPONSE IN THE UK MET OFFICE MODEL (2000)
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“The ALL ensemble captures the main features of global mean temperature
changes observed since 1860.” -- Stort, Tett, Mitchell, et al., Science, 2000



[PCC-2001 STATEMENTS ON DETECTION AND
ATTRIBUTION OF CLIMATE CHANGE

¢¢ Simulations that include estimates of natural and
anthropogenic forcing reproduce the observed large-scale
changes in surface temperature over the 20th century.

¢¢ Most model estimates that take into account both
greenhouse gases and sulphate aerosols are consistent with
observations over this period.




OUR SIMULATIONS THAT INCLUDE ESTIMATES
OF NATURAL AND ANTHROPOGENIC FORCING
REPRODUCE THE OBSERVED LARGE-SCALE

CHANGES IN SURFACE TEMPERATURE
OVER THE 20TH CENTURY.

BUT MOM, DON'T THE
GCM CALCULATIONS
REQUIRE ACCURATE
ESTIMATES OF
FORCING? _

SHHHH || THE EMPEROR
I&HT HEAR YOU.




UNCERTAINTY PRINCIPLES
Climate sensitivity A = AT / F

The fractional uncertainty in climate sensitivity A is evaluated from
fractional uncertainties in temperature change AT and forcing F’ as:

b (4]

A reasonable target uncertainty might be:

% = 30%, e.qg., ATZXCOZ = (3 T+ 1) K

This would require uncertainties in temperature anomaly and forcing:

OAT x5F = 20%.
AT F

This imposes stringent requirements on uncertainty in aerosol forcing!



REQUIRED UNCERTAINTY IN AEROSOL FORCING

Uncertainty 1n total forcing not to exceed 20%

GHG Forcing (well mixed gases + strat and trop O3) =2.6 W m2 + 10%
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KEY REQUIREMENTS FOR FUTURE RESEARCH

® Abundance, composition, and mixing state and optical and cloud-
nucleating properties of atmospheric aerosols as a function of location
and time
Observation
- In-situ measurements.
- Ground-based and satellite-based remote sensing.
Chemical transport modeling

- Evaluate by comparison with observation.

® Sources of aerosols and aerosol precursors (mass rates and size
dependent composition and mixing state)
Measurement
- As a function of location and controlling variables.
- For anthropogenic and natural aerosols.
Develop emission factors and emission inventories

o Atmospheric chemical and microphysical transformation processes

Laboratory, theory, field measurements and modeling
contd. ..



KEY REQUIREMENTS FOR FUTURE RESEARCH (cont’d)

o Wet and dry removal processes
Size and composition dependence.

® Representation of aerosols in chemical transport models
Mass loading as a function of location and secular time.
Size-dependent composition and mixing state.
- Optical properties
- Hygroscopic properties
- Cloud nucleating properties

e Aerosol-radiation interactions

Quantify aerosol influences on short- and longwave radiation in cloud-
free skies.

e Aerosol - cloud interactions

Quantify the effects of changes in aerosol abundance and composition
on cloud formation, persistence, and amount, on precipitation
amounts, and on cloud radiative properties.

e Uncertainties in all the above
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